

SESQUITERPENE LACTONES AND ALIPHATIC ESTER FROM *CHAMAEMELUM FUSCATUM*

J. DE PASCUAL TERESA, J. ANAYA, E. CABALLERO and M. C. CABALLERO

Department of Organic Chemistry, Salamanca University Salamanca, Spain

(Received 6 July 1987)

Key Word Index—*Chamaemelum fuscum*; Compositeae; essential oil; aliphatic ester; sesquiterpene lactones; eudesmanolides.

Abstract—A new aliphatic ester, 2-methylene-3-oxobutyl methacrylate was isolated from the essential oil of *Chamaemelum fuscum*. Four new eudesmanolides, 8-O-methacryloylfuscatin, 8-O-isobutyrylfuscatin, 3 α -hydroxy-8 α -methacryloyloxyreynosin and 3 α -hydroxy-8 α -isobutyryloxyreynosin were obtained from the chloroform extract of this plant.

INTRODUCTION

Following our studies on the composition of *Chamaemelum fuscum* (Brot.) Vasc., we have isolated from the essential oil, besides the compounds described in a previous paper [1], *trans*-pinocarveol (1) [2] and the new ester, 2-methylene-3-oxobutyl methacrylate (2). The structures of compounds 2 and 3 have now been confirmed by synthesis. From the chloroform extract, among previously described compounds [3], we have isolated armefolin (9) [4], and four new eudesmanolides 10a, 11a, 12a and 13a.

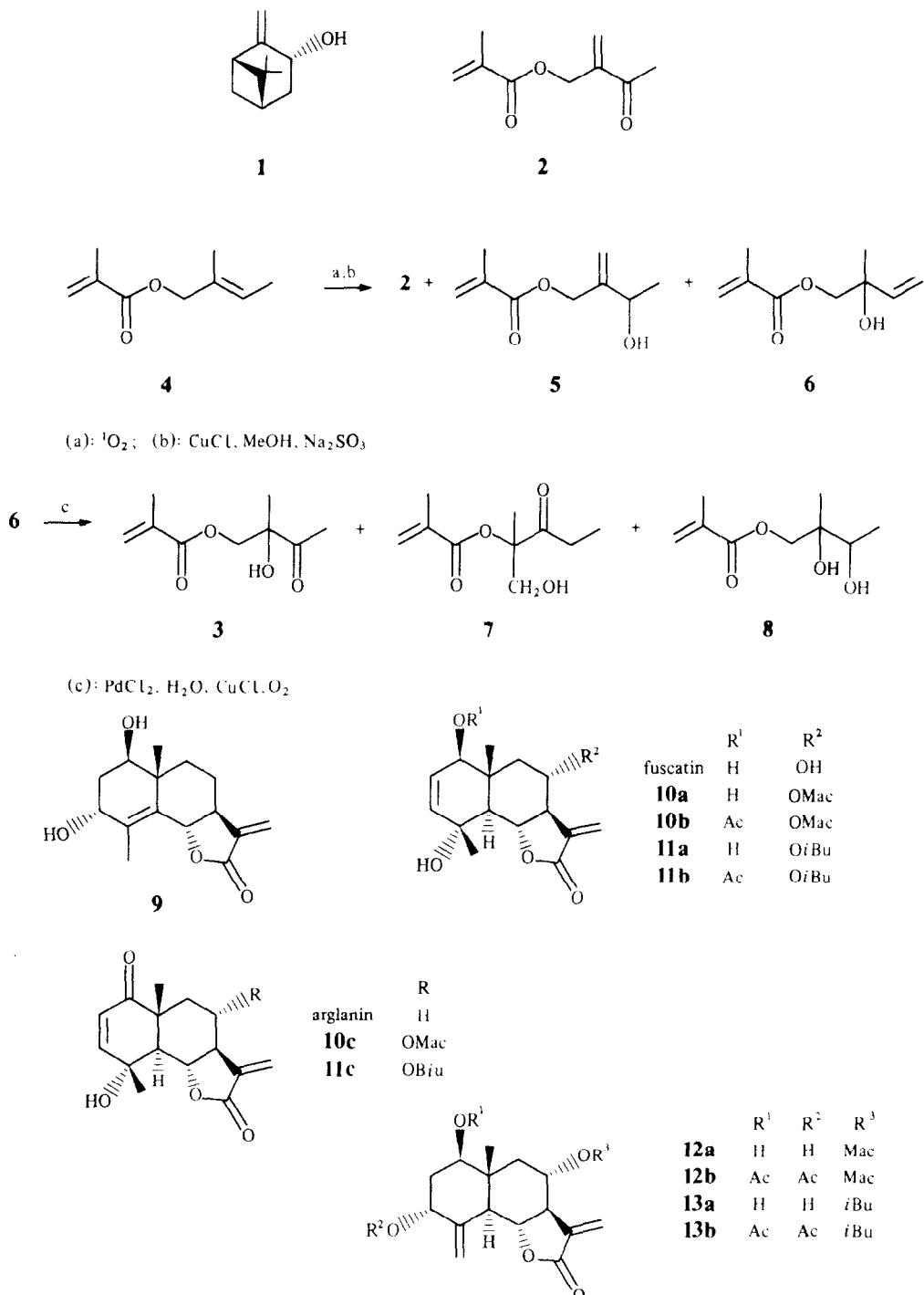
RESULTS AND DISCUSSION

Compound 2 was isolated as a fragrant oil from the essential oil. Its mass spectrum had a molecular ion at *m/z* 168 ($C_9H_{12}O_3$). The IR spectrum showed absorption bands of an unsaturated ester (1.725 cm^{-1}) and an α,β -unsaturated ketone (1.680 cm^{-1}), in accordance with the UV spectrum ($\lambda_{\text{max}} 218\text{ nm}$).

The ^1H NMR spectrum (Table 1) exhibited the presence of a methylene group conjugated with a carbonyl, a methyl ketone and an allylic methylene geminal to an ester group. These data allowed us to propose the structure 2-methylene-3-oxobutyl methacrylate for compound 2. This was confirmed by oxidation of ester 4 followed by $\text{CuCl}-\text{MeOH}-\text{Na}_2\text{SO}_3$ [5] treatment which afforded compounds 2, 5 and 6.

The oxidation of 6 with an aqueous solution of palladium chloride [6], in the presence of CuCl and O_2 [7] afforded 3, its transesterification product 7 as well as the diol 8. The properties of the synthetic compound 3 were identical with those previously described for the natural product and this fact confirms the structure proposed for this compound.

From the chloroform extract armefolin (9) and two crystalline products were isolated in addition to the previously described compounds [3].


The first product was a mixture (NMR) that showed in the IR spectrum absorption bands of γ -lactone (1.780 cm^{-1}), ester (1.720 cm^{-1}) and hydroxyl groups (3.420 cm^{-1}). The ^{13}C NMR spectrum (Table 2) had

peaks corresponding to four quaternary carbons (carbonylic, olefinic, oxygenated and angular), seven methynes (two of them olefinic and three bearing an oxygenated function), two methylenes (one olefinic) and two methyl groups. Also two sets of less intense signals were observed and assigned to methacrylate and to isobutyrate moieties.

The ^1H NMR spectrum (Table 3), in addition to the signals of the methacrylate and isobutyrate esters, displayed those of a *trans*-fused α -methylene- γ -lactone, two methyls (one of them angular and the other geminal with a hydroxyl group), an allylic hydrogen geminal with a hydroxyl group, a singlet of two olefinic protons and the proton geminal to the equatorial ester group.

By treatment with acetic anhydride-pyridine a monoacetyl derivative was obtained, whose ^1H NMR spectrum (Table 3) showed the hydrogen geminal to the acetate at δ 5.29 and two different signals for the olefinic hydrogens at 5.59 and 5.39. The chromic oxidation of the natural products afforded the mixture of unsaturated ketones whose ^1H NMR spectrum (Table 3) was very similar to that of arglanin [8] with the presence of the ester group and their geminal hydrogen as a major difference. Thus the chromic oxidation product must be a mixture of 8α -methacryloyloxy, and 8α -isobutyryloxyarglanin, and as a consequence the natural mixture must contain the methacryloyl and isobutyryl esters of 1,4-dihydroxy-*trans*-eudesma-2,11(13)-dien-6,7-olide, which we have called 8α -methacryloyl, and 8α -isobutyrylfuscatin, respectively. The equatorial disposition for the hydroxyl group at C-1 was deduced from the coupling constants of the corresponding geminal hydrogen in the natural alcohols and the acetylation products. The absolute configuration was deduced from the positive molecular rotation as that depicted in the structure figures. The mass spectrum did not show the molecular ion, but two peaks at *m/z* 335 [$M-\text{Me}$] $^+$ for 10a and 333 [$M-\text{Me}$] $^+$ for 11a were observed besides the characteristic fragmentations of the ester groups at *m/z* 247 [$M-\text{Me}-\text{MacOH}$] $^+$ for 10a and [$M-\text{Me}-i\text{BuOH}$] $^+$ for 11a.

The other product also consisted of a mixture of a methacrylate and isobutyrate esters of the same alcohol. It showed absorption bands of γ -lactone, ester, hydroxyl

groups and double bonds in its IR spectrum. The ¹³C NMR spectrum (Table 2) had peaks corresponding to four quaternary carbons (one of them of the lactone and two others of a double bond), six methynes (four bonded to oxygenated functions), six methylenes (two olefines) and a methyl group, besides those less intense peaks of the methacrylate and isobutyrate moieties.

The ¹H NMR spectrum (Table 3) showed signals of a 6,7-*trans*-eudesmanolide esterified at C-8, similar to those of mixture **10a** and **11a**. Other signals in this spectrum

corresponding to a methyl, two hydrogen atoms geminal with hydroxyl groups (δ 3.95 and 4.37, shifted to 5.09 and 5.16, respectively, in the acetylation products), and two olefinic protons (5.21 and 5.04), allowed us to assign the structure of 8 α -methacryloyloxy and 8 α -isobutyryloxy-1 β ,3 α -dihydroxy-4(15),11(13)dien-6,7-eudesmanolide, which we have named 3 α -hydroxy-8 α -methacryloyloxyreynosin (**12a**) and 3 α -hydroxy-8 α -isobutyryloxyreynosin (**13a**), respectively. The stereochemistries of C-1 and C-8 have been deduced from the

Table 1. ^1H NMR spectra of compounds **2**, **7** and **8** (60 MHz; CCl_4 ; TMS as int. standard; J in Hz)

H	2	7	8
3	5.48 br s 6.03 br s	5.55 br s 6.05 br s	5.54 br s 6.07 br s
4	1.92 d (1.6)	1.91 d (1.6)	1.96 d (1.6)
1	4.72 dd (6.5; 2)	—	4.04 d (12) 4.26 d (12)
3	—	2.28 s	3.58 c (7)
4	2.28 s	1.38 s	1.17 d (7)
5	5.83 br s 6.03 br s	4.18 d (12)	1.18 s 4.40 d (12)

coupling constant values of hydrogen atoms H-1 and H-8 with those of the C-2 methylene. The absolute configurations were deduced from their positive molecular rotation.

The mass spectrum of this mixture does not show a molecular ion peak, the highest fragment peaks were observed at m/z 335 $[\text{M} - \text{Me}]^+$ for **13a** and 333 $[\text{M} - \text{Me}]^+$ for **12a**; other significant peaks were m/z 244 $[\text{M} - \text{H}_2\text{O} - \text{MacOH}]^+$ for **12a** and $[\text{M} - \text{H}_2\text{O} - i\text{BuOH}]^+$ for **13a** and m/z 226 $[\text{M} - 2\text{H}_2\text{O} - \text{MacOH}]^+$ for **12a** and $[\text{M} - 2\text{H}_2\text{O} - i\text{BuOH}]^+$ for **13a**.

EXPERIMENTAL

The plant material was collected in April in Zarza de Granadilla (Cáceres, western Spain) and identified by Professor B. Casaseca Mena from the Department of Botany, Salamanca

University, Spain, where a specimen is held (Herbarium no. 6679). Mps: uncorr. Optical rotations: CHCl_3 ; UV; EtOH ; IR; KBr, discs, or film; ^1H NMR spectra were recorded at 60 and 200 MHz; ^{13}C NMR were recorded at 50.3 MHz. MS; 70 eV. Analytical TLC was performed on silica gel G (Merck 7731), prep. TLC on silica gel PF₂₃₄₋₂₃₆ (Merck 7748) and CC on silica gel 60 (Merck 7734); CD were measured in MeOH .

Hexane extraction and separation of compounds. The hexane extract of the air-dried material (4 kg) *Chamaemelum fuscatum* (Brot.) Vasc., was steam-distilled and yielded 9.12 g (0.26%) of essential oil. The oil was chromatographed over a silica gel column using hexane with gradually increasing proportions of Et_2O as eluent. The first fraction (hexane) gave: (−)-*ar-curcumene* (530 mg); the second fraction (hexane– Et_2O 19:1) gave 2-methyl-2*E*-butenyl methacrylate (547 mg), 2-methylallyl isobutyrate (105 mg), methyl-*trans*-5-(2-thienyl)pent-4-in-2-enoate (182 mg) and neryl isovalerate (646 mg). The third fraction (hexane– Et_2O , 9:1) gave methyl-*trans*-5-(2-thienyl)pent-4-in-2-enoate (35 mg), bisabolen 1,4-endoperoxide (50 mg), **2** (180 mg) and *trans*-pinocarveol (1, 100 mg). The fourth fraction (hexane– Et_2O , 4:1) gave 2-hydroxy-2-methyl-3-oxobutyl methacrylate (110 mg) and 2-hydroxy-2-methyl-3-butyl methacrylate (680 mg). **2**—*Methylene-3-oxobutyl methacrylate* (**2**). IR ν_{max} , cm^{-1} ; 3,070, 1,725, 1,680, 1,640, 940, 815. UV λ_{max} = 218 (ϵ ; 6,590) nm, ^1H NMR; Table 1. MS, m/z (rel. int.): 168(2), 153(3), 127(22), 125(65), 99(18), 63(93), 43(100), 41(68). **Synthesis of **2** from **4**.** To a soln of **4** (300 mg) in *iso*-PrOH (30 ml), Rose Bengal (10 mg), was added, the mixture stirred for 12 hr and exposed to sunlight. When the *iso*-PrOH had been evapd, MeOH (2 ml) and CuCl (45 mg) in MeOH (1.15 ml) and pyridine (0.15 ml) were added at 0° with stirring. When the addition finished the mixture was maintained at room temp. for 24 hr and then an aqueous soln of 10% Na_2SO_3 was added until a negative test was obtained of oxidants. Evaporation of the solvent gave 108 mg of product, which by CC gave **2** (10 mg), **5** (30 mg) and **6** (35 mg).

Table 2. ^{13}C NMR spectra of compounds **10a**–**13a** (150.3 MHz; CDCl_3 ; TMS as int. standard)

C	10a + 11a	12a + 13a
1	76.8	73.3
2	130.4	37.5
3	133.8	73.6
4	69.4	144.3
5	53.9	46.7
6	78.2	76.5
7	52.7	52.5
8	70.5	72.9
9	44.8	42.2
10	41.9	42.8
11	135.9	136.7
12	169.1	169.7
13	120.0	119.5
14	24.9	11.9
15	15.1	113.4
Mac.	166.4 135.8 126.6 15.0	167.1 136.0 126.4 14.5
<i>iBu.</i>	176.1 34.2 18.2 18.2	176.2 34.1 18.2 18.9

Table 3. ^1H NMR spectra of compounds **10a**–**13a**, **10b**–**13b** and

H	10a + 11a	10b + 11b
1	4.13 br s	5.29 br s
2	5.59 s	5.59 m
2'		
3	5.59 s	5.39 d (10)
5	2.17 d; 2.14 d (11.6)	—
6	4.17 dd; 4.14 dd (11.3, 11.3)	4.10 dd (11.1, 11.1)
7	2.95 dddd (11.3, 10.7, 3.0, 2.9)	2.95 m
8	5.19 ddd (10.7, 10.7, 4.1)	5.20 ddd (10.7, 10.7, 4.1)
9	2.49 dd; 2.47 dd (12.7, 4.1)	—
9'	1.55–1.30 m	—
13	6.18 d (3.0)	6.15 d (3.0)
13'	5.59 d (2.9)	5.58 d (2.9)
14	1.06 s; 1.04 s	1.09 s; 1.07 s
15	1.43 s	1.42 s; 1.41 s
15'		
Mac.	6.14 br s 5.65 t (1.5) 1.96 s	6.14 br s 5.62 br s 2.03 s
iBu		2.60 m 1.22 d (6.8) 1.19 d (6.8)
OAc.		2.07 s; 2.06 s

Synthesis of 3 from 6. PdCl_2 (130 mg) and CuCl (360 mg) were added in a stream of O_2 with vigorous stirring to DMF (3 ml) and H_2O (0.6 ml). Once the consumption of O_2 was finished 2-hydroxy-2-methyl-3-butenol (613 mg) was added and with a stream of O_2 stirring was continued for 72 hr. The mixture was poured into 3N HCl and the mixture extracted with CH_2Cl_2 . The organic layer (500 mg) was chromatographed (silica gel) to afford **3** (22 mg), **7** (40 mg) and **8** (125 mg).

1-Hydroxymethyl-1-methyl-2-oxopropyl methacrylate (**7**). $\text{IR } \nu_{\text{max}} \text{ cm}^{-1}$: 3,450, 1,725, 1,715, 1,650, 1,460, 1,170, 1,035, 950, 920, 820. ^1H NMR, Table 1. *2,3-Dihydroxy-2-methylbutyl methacrylate* (**8**). $\text{IR } \nu_{\text{max}} \text{ cm}^{-1}$: 3,460, 1,730, 1,655, 1,185, 1,030, 960, 830. ^1H NMR, Table 1.

Chloroform extraction and separation of compounds. Air-dried plant material (14 kg) were extracted in a Soxhlet with CHCl_3 and the neutral fraction of the $\text{EtOH}-\text{H}_2\text{O}$ (2:3) soluble extract was chromatographed (silica gel), developing with C_6H_6 , $\text{C}_6\text{H}_6-\text{Et}_2\text{O}$ and $\text{C}_6\text{H}_6-\text{AcOEt}$ mixtures of increasing polarity to

give among previously described compounds [3]: armeolin (180 mg) and the mixtures **10a + 11a** (200 mg) and **12a + 13a** (100 mg) which were chromatographed and crystallized several times, but no pure **10a**, **11a**, **12a** and **13a** were obtained.

8-O-methacryloylfuscatin (**10a**) and *8-O-isobutyrylfuscatin* (**11a**):

λ	589	578	546	436	(ϵ , 1.4)
[α]	+58.2	+59.3	+65.7	+93.6	

$\text{IR } \nu_{\text{max}} \text{ cm}^{-1}$: 3,420, 3,020, 1,780, 1,720, 1,655, 1,120, 980, 920, 820. $\text{MS } m/z$ (rel. int.): 335 (7), 333 (21), 265 (3), 247 (8), 201 (10), 147 (8), 145 (7), 117 (16), 83 (57), 71 (40), 69 (100). ^1H NMR, Table 3. ^{13}C NMR, Table 2. Acetylation of **10a** and **11a**: Treatment of a mixture of **10a** and **11a** with AC_2O -pyridine in the usual way afforded a mixture of the acetates **10b** and **11b**. $\text{IR } \nu_{\text{max}} \text{ cm}^{-1}$: 3,500, 3,020, 1,775, 1,745, 1,720, 1,200, 1,120, 980, 820. ^1H NMR, Table 3.

10c–11c (200 MHz, CDCl_3 , TMS as int. standard, J in Hz)

10c + 11c	12a + 13a	13b
	3.95 <i>dd</i> (11.0, 4.5)	5.09 <i>dd</i> (12.0, 5.0)
5.89 <i>d</i> (10.4)	2.04 <i>ddd</i> (15.2, 4.5, 3.0)	1.95–1.75 <i>m</i>
	1.68 <i>ddd</i> (15.2, 11.0, 3.0)	1.95–1.75 <i>m</i>
6.60 <i>d</i> (10.4)	4.37 <i>dd</i> (3.0, 3.0)	5.46 <i>t</i> (3.0)
2.57 <i>d</i> ; 2.55 <i>d</i> (11.4)	2.82 <i>brd</i> ; 2.80 <i>brd</i> (11.1)	2.75 <i>d</i> (11.2)
4.23 <i>dd</i> ; 4.21 <i>dd</i> (11.4, 11.4)	4.14 <i>dd</i> ; 4.11 <i>dd</i> (11.1, 11.1)	4.05 <i>dd</i> (11.2, 11.2)
2.88 <i>dddd</i> (11.4, 10.8, 3.0, 2.9)	2.99 <i>dddd</i> ; 2.93 <i>dddd</i> (11.1, 11.1, 3.0, 2.6)	2.90 <i>dddd</i> (11.2, 10.8, 3.0, 2.9)
5.25 <i>ddd</i> ; 5.19 <i>ddd</i> (10.8, 10.8, 4.3)	5.25 <i>ddd</i> ; 5.21 <i>ddd</i> (11.1, 11.0, 4.4)	5.16 <i>ddd</i> (10.8, 10.8, 4.2)
2.24 <i>dd</i> ; 2.17 <i>dd</i> (12.8, 4.3)	2.54 <i>dd</i> ; 2.46 <i>dd</i> (12.5, 4.4)	2.14 <i>dd</i> (13.1, 4.7)
—	1.38 <i>m</i>	1.35–1.20 <i>m</i>
6.19 <i>d</i> (3.0)	6.14 <i>d</i> (3.0)	6.12 <i>d</i> (3.0)
5.59 <i>d</i> (2.9)	5.55 <i>d</i> (2.6)	5.51 <i>d</i> (2.9)
1.27 <i>s</i> ; 1.25 <i>s</i>	0.87 <i>s</i> ; 0.85 <i>s</i>	0.94 <i>s</i>
1.57 <i>d</i> ; 1.56 <i>d</i> (1.6)	5.21 <i>s</i>	5.34 <i>brs</i>
	5.04 <i>s</i>	5.15 <i>d</i> (1.6)
6.12 <i>brs</i>	6.14 <i>brs</i>	
5.64 <i>t</i> (1.5)	5.66 <i>t</i> (1.6)	
1.96 <i>s</i>	1.99 <i>brs</i>	
	2.58 <i>m</i>	2.57 <i>m</i>
1.19 <i>d</i> (6.9)	1.21 <i>d</i> (7.0)	1.21 <i>d</i> (7.0)
1.18 <i>d</i> (6.9)	1.19 <i>d</i> (7.0)	1.18 <i>d</i> (7.0)
		2.04 <i>s</i>
		2.02 <i>s</i>

Oxidation of 10a and 11a. The mixture of **10a** and **11a** (20 mg) was dissolved in pyridine (0.1 ml) and CH_2Cl_2 (1 ml) and added to a soln of CrO_3 (30 mg) in pyridine (0.2 ml) and CH_2Cl_2 (0.5 ml). The mixture was stirred for 3 hr in an ice water bath under N_2 . The oxidation product was chromatographed over silica gel. Elution with CHCl_3 –MeOH (99:1) afforded 9 mg of the mixture of 8α -methacryloyloxy argylanin (**10c**) and 8α -isobutyryloxyarglanin (**11c**). IR ν_{max} cm^{-1} : 3.340, 3.020, 1.775, 1.720, 1.660, 1.120, 975, 815. CD (MeOH): $\Delta\epsilon_{212} = +12.0$, $\Delta\epsilon_{235} = -6.5$, $\Delta\epsilon_{250} = -3.2$, $\Delta\epsilon_{330} = -1.6$. ^1H NMR, Table 3.

3α -Hydroxy- 8α -methacryloyloxy reynosin (**12a**) and 3α -hydroxy- 8α -isobutyryloxyreynosin (**13a**):

$$\lambda \quad \begin{array}{cccc} 589 & 578 & 546 & 436 \end{array} \quad (c, 0.7) \\ [\alpha] \quad \begin{array}{l} +100.7 + 104.7 + 118.6 + 174.6 \end{array}$$

IR ν_{max} cm^{-1} : 3.440, 3.090, 1.770, 1.720, 1.640, 1.225, 970, 900, 815, MS m/z (rel. int.); 335 (7), 333 (5.5), 262 (11), 247 (7), 245 (6), 244 (24), 226 (7), 218 (30), 211 (8), 200 (15), 145 (22), 122 (29), 83 (74), 71 (60), 69 (100). ^1H NMR, Table 3.

Acetylation of **12a** and **13a** gave the mixture of diacetates **12b** and **13b** which was chromatographed over silica gel– AgNO_3 . Elution with C_6H_6 – Et_2O (19:1) afforded 20 mg of 3α -acetoxy- 8α -isobutyryloxyreynosin (**13b**): IR ν_{max} cm^{-1} : 3.090, 1.780, 1.740, 1.725, 1.240, 970, 910, 810. ^1H NMR, Table 3; ^{13}C NMR, Table 2.

REFERENCES

- de Pascual T., J., Caballero, E., Caballero, C., Anaya, J. and Gonzalez, M. S. (1983) *Phytochemistry* **22**, 1757.
- Chretien-Bessiere, Y., Peyron, L., Benelet, L. and Garnero, D. (1970) *J. Bull. Soc. Chim* 381.

3. de Pascual T., J., Caballero, E., Anaya, J., Caballero, C. and Gonzalez, M. S. (1986) *Phytochemistry* **25**, 1365.
4. Mata, R., Delgado, G. and Romo de Vivar, A., (1984) *Phytochemistry* **23**, 1665.
5. Schenck, G. O., Albrecht Neumuller, O., Ohloff, G. and Schröter, S. (1965), *Justus Liebigs Ann. Chem.*, **26**, 687.
6. Tsuji, J., Shimizu, I. and Yamamoto, F. (1976) *Tetrahedron Letters*, **34**, 2975.
7. Clement, W. H. and Selwitz, C. M., (1964) *J. Org. Chem.* **29**, 241.
8. Matsueda, S. and Geissman, T. A. (1967) *Tetrahedron Letters* **21**, 2013.